Transient Fault Signal Identification of AT Traction Network Based on Improved HHT and LSTM Neural Network Algorithm

نویسندگان

چکیده

This paper aims to address the difficult pinpoint fault cause of full parallel AT traction power supply system with special structure. The characteristics are easily covered up, and high transition impedance only affects singularity wavehead, making traveling waves hard identify. Moreover, classification accuracy traditional time-frequency analysis method is not sufficiently distinguish precisely. In this paper, a network based on single-channel improved Hilbert–Huang transform deep learning proposed. extracts effective features directly from original signals classifies types at same time. data categorization increased by applying extract transient produce one-dimensional feature data, which analyzed energy spectrum. Using similarity recognition long-short-term memory neural network, extracted high-frequency trained tested classify more accurately. order verify effectiveness method, several kinds short-circuit lightning strike faults continuously simulated verified in paper. Considering various conditions factors, proposed HHT+LSTM compared LSTM for direct processing signals. HHT + algorithm achieves an 99.99%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UAV attitude Sensor Fault Detection Based On Fuzzy Logic and by Neural Network Model Identification

Fault detection has always been important in aviation systems to prevent many accidents. This process is possible in different ways. In this paper, we first identify the longitudinal axis plane model using neural network approach. Then based on the obtained model and using fuzzy logic, the aircraft status sensor fault detection unit was designed. The simulation results show that the fault detec...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Fan Improved Algorithm of BP Neural Network Fault Diagnosis Research

According to the structure of the BP neural network and the algorithm, choose three methods of BP neural network algorithm was improved, through analysis and comparison, computing speed is faster, more accurate judgment Levenberg Marquardt algorithm as the improved algorithm of optimal; Using the algorithm to the established BP neural network for training analysis; Then use the Matlab software,...

متن کامل

A New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network

 Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...

متن کامل

An Improved BP Neural Network Algorithm Based on Factor Analysis

Back-Propagation (BP) neural network, as one of the most mature and most widespread algorithms, has the ability of large scale computing and has unique advantages when dealing with nonlinear high dimensional data. But when we manipulate high dimensional data with BP neural network, many feature variables provide enough information, but too many network inputs go against designing of the hidden-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2023

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en16031163